Utilisation des réseaux de neurones artificiels pour la commande d'un véhicule autonome. (Artificial Neural Networks for Automatic Vehicle Control)

نویسنده

  • Eric Gauthier
چکیده

The subject of this thesis covers both mobile robotic and arti cial neural networks(ANN) elds. Our aim is to study solutions that connectionist techniques can bring to particularproblems raised by the automatic control of a car-like vehicle. This report is composed of two mainparts. The rst of them processes fundamental aspects of mobile robot control and of the use ofarti cial neural networks for control of complex systems. This rst study allows us to underline thedi erent points where ANN can contribute in a control architecture providing a real autonomy to thevehicle while respecting the robustness and rapidity constraints induced by the utilisation of a robot ofthe size and the speed of a car. We propose in the second part of this report several controllers allowinggradual increase of the robot autonomy. First of all, we are interested in a simple task consisting onlyin enslaving the robot on a reference path given by a planner. Our approach enables a continuousadaptation of the system facing possible changes of the parameters of the robot or its environment.So as to allow the execution of manoeuvres without external orders, we also propose a methodologyfor the realisation of controllers based on external sensors of the vehicle. Our approach uses a modelallying characteristics from both fuzzy logic and ANN. Finally we show how complex tasks can berealised using a sequence of several simple controllers. Our realisation of the selection system for thesecontrollers, which uses a recurrent ANN, exhibits some characteristics of robustness and very fastreactions when faced to the external events that must be taken into account.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial neural networks as rainfall- runoff models

A series of numerical experiments, in which flow data were generated from synthetic storm sequences routed through a conceptual hydrological model consisting of a single nonlinear reservoir, has demonstrated the closeness of fit that can be achieved to such data sets using Artificial Neural Networks (ANNs). The application of different standardization factors to both training and verification s...

متن کامل

Rate versus synchrony code for human action recognition

We propose a bio-inspired feedforward spiking network modeling two brain areas dedicated to motion (V1 and MT), and we show how the spiking output can be exploited in a computer vision application: action recognition. In order to analyze spike trains, we consider two characteristics of the neural code: mean firing rate of each neuron and synchrony between neurons. Interestingly, we show that th...

متن کامل

Utilisation des réseaux de neurones temporels pour le pronostic et la surveillance dynamique. Etude comparative de trois réseaux de neurones récurrents

RÉSUMÉ. L’objet de cet article consiste en un état de l’art des réseaux de neurones temporels et d’une comparaison de trois réseaux de neurones récurrents les plus représentatifs pour des applications de surveillance dynamique et de pronostic. Les critères de sélection de ces réseaux se situent à deux niveaux : temporel et architectural. Suite à l’application de ces critères, trois réseaux récu...

متن کامل

Cultured Nerve Cell Networks as Biosensor using Artificial Neural Nets

Les Réseaux neuronaux d’un mammifère qui se développent sur des microélectrodes représentent des transducers qui réagissent avec modifications de leur environement chimique. Leur réaction, qui dépend souvent de la substance ou de la concentration, peut servir de capteur biologique pour detecter les variations au niveau des substances chimiques. Avec des traitements singaux appropriés, ces systè...

متن کامل

Introducing numerical bounds to improve event-based neural network simulation

Although the spike-trains in neural networks are mainly constrained by the neural dynamics itself, global temporal constraints (refractoriness, time precision, propagation delays, ..) are also to be taken into account. These constraints are revisited in this paper in order to use them in event-based simulation paradigms. We first review these constraints, and discuss their consequences at the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999